
Automata and Automatic Groups

A Final Project for the Second Course in the Theory of

Groups

Gabriel Ong

with Brady Nichols, Eitan Marcus, and Juan Atehortúa

May 2022

MATH 3602: Advanced Topics in Group Theory

Gabriel Ong; Automata and Automatic Groups 2

1 Computing

Computers have become ubiquitous in our daily lives, yet the theory behind them is often

poorly understood. Most modern day computers are in fact examples of finite state au-

tomata, simple machines whose output depends on both the machine’s current state and its

input. Let us consider the a turnstile in a public transportation system.

Closedstart Open

Swipe

Push

Push Swipe

The diagram above, known as a state transition diagram, tells us how the turnstile behaves

in responses to pushes and swipes. A more careful examination of the diagram tells us that

the turnstile behaves as expected. A turnstile starts in the closed position and remains

closed when pushed without swiping one’s transit card. It is only when the transit card is

swiped that the turnstile opens. In the open state, an additional swipe keeps the turnstile

open but pushing and going through the turnstile returns it to its closed state for the next

commuter. The same information can be represented by the following table, known as a

next-state table.

Swipe Push

→ Closed Open Closed

◦ Open Open Closed

Let us now be more precise.

Definition 1.1 (Finite State Automata). A finite state automata A = (I, S, s0, B,N) con-

sists of the following: a set I, the input alphabet of symbols; a set S, the states of the

automata; a designated s0 ∈ S, the initial state of the automata; a next state function

N : S × I → S associating a next state to a given current state and input alphabet.

Returning to the example above, our set of symbols are {Swipe,Push}, our set of states are
{Closed,Open}, our initial state is Closed (as indicated by the arrow), our accepting state

is Open (as indicated by the double circle in the state transition diagram or the circle in the

Gabriel Ong; Automata and Automatic Groups 3

next-state table), with our next-state function defined by the next-state table.

Denote I∗ the set of strings formed from letters in I. Our finite state automata A par-

titions I∗ into strings that lead to an accepted state and those that do not when input

into the automata A in its starting state. This leads us to the following two closely related

definitions.

Definition 1.2 (w Accepted). Let w ∈ I∗ and A a finite state automata. w is accepted

by A if and only if A goes to an accepting state when the symbols of w are input to A in

sequence when A is in its initial state.

Definition 1.3 (Accepted Language). The language accepted by A is the set

L(A) = {w ∈ I∗|w is accepted by A}.

In the case of the turnstile, it is easy to see that any string in {Swipe,Push}∗ ending in

Swipe will be accepted by the automata – regardless of the state the automata is in, an

input of Swipe will lead to the accepted state.

We focus our discussion on deterministic finite automata, abbreviated DFA.

Definition 1.4 (Deterministic Finite Automata). A finite state automata A is deterministic

if and only if it has exactly one start state and no two edges leaving a state have the same

label.

We can now define regular languages, which will play a large part in our latter discussions.

Definition 1.5 (Regular Language). A language L is regular if and only if it is the accepted

language of some deterministic automata A.

It seems intuitively true that for any language L we can construct some automata A such

that L = L(A). This is not true. One of the easiest ways to determine if a language is regular

is if the automata will need infinite memory to determine if a word is accepted (Meier, 2008).

Lemma 1.1 (Pumping). Let L(A) be the regular language accepted by the automaton A.

There exists an integer n ≥ 1 such that any x ∈ L(A) of length greater than n can be written

x = uvw where v is a nonempty word, u is of length less than n, and wviw ∈ L(A) for all

i ≥ 0.

Gabriel Ong; Automata and Automatic Groups 4

Proof. Let A be a DFA with accepted language L(A). Set n = |S| and x ∈ L(A) a word of

length greater than n. Since A is a DFA there is a unique path starting at s0 and ending at

an accepted state indexed by the letters of x. Since this is a path of length greater than n,

Dirichlet’s Box Principle indicates that there must be some state z ∈ S visited at least twice.

Let u be the substring of x indexing the path from s0 to the first time it intersects z, v

a substring of x indexing the path between the first and last occurrences of z, and w a

substring of x indexing the path between z to an accepting state. Note that v and w may

be empty paths.

It follows that u is shorter than n since it cannot visit any vertex more than once and

uviw ∈ L(A) since this describes a path from s0 to z, repeating a cycle from z to z i times,

then a path z to an accepting state, which still ends in an accepting state. This gives us our

claim.

Let us now see this lemma in action through the following example.

Proposition 1.2 ({anbn|n ≥ 1} is Not a Regular Language). The language {anbn|n ≥ 1} is

not a regular language.

Proof. Suppose to the contrary that {anbn|n ≥ 1} is a regular language and set |S| = n for

some automata A with language {anbn|n ≥ 1}. By Dirichlet’s Box Principle, there must be

some state attained at least twice, namely there exists a closed loop on the path indexed by

the word an+1 say of length k. By the pumping lemma we can repeat this loop so an+k+1bn+1

leads to an accepting state just as an+1bn+1 does, a contradiction of {anbn|n ≥ 1} being a

regular language.

This is to say that for an automata that accepts strings of the form ab, a2b2, a3b3, . . . then

then the automata must accept some set strictly containing {anbn|n ≥ 1}, so {anbn|n ≥ 1}
cannot be a regular language. Let us now define the following terms.

Definition 1.6 (Cone Type of a Word). Let A be an automata and L(A) ⊆ I∗ its language.

Suppose x ∈ I∗ its cone

Cone(x) = {w ∈ I∗|xw ∈ L(A)}.

Definition 1.7 (Cone Type of a Language). Let A be an automata and L(A) ⊆ I∗ its

language. The cone type of L(A) is

Cone(L(A)) = {Cone(w)|w ∈ I∗}.

Gabriel Ong; Automata and Automatic Groups 5

We can think of cone type of a word w ∈ I∗ as the set of extensions x such that wx is in the

language, namely as a set of paths in the automaton from the state indicated by w to any

one of the accept states. The cone type of a language is then the set of possible extensions

of all words such that the extended word is accepted. Intuitively, we can think of this as

the set of geodesic paths from a given state of the automata to an accept state. Returning

to our example of the turnstile, the cone type of the language will be the set of all words

ending in Swipe since Swipe always takes the automata to an accepted state regardless of

the current state. This means that our turnstile has only one cone type. Let us now prove

a theorem to conclude our discussion of automata.

Theorem 1.3 (Myhill-Nerode). Let I be a collection of symbols and L ⊆ I∗ a language. L

is a regular language if and only if Cone(L) is finite.

Proof. (=⇒) Suppose L is regular, we show its cone type is finite. If L is regular then there

exists a DFA that accepts it. For each state s ∈ S let As be the automata formed by making

s the start state. For a word w ∈ I∗ the cone type of w is completely determined by the

state sw – the state attained after the letters of w are input sequentially into As. We thus

have Cone(w) = L(Asw) and have that the number of cone types for L is at most the number

of states |S|.

(⇐=) Suppose Cone(L) is finite, we show it is regular. Let Cone(L) be finite. We con-

struct an automata A declaring its states to be the cone types of L. Set s0 = Cone(ε) where

ε ∈ I∗ is the empty word. The accepting states of A are the cones containing ε since if w is

accepted then εw is as well. Fix some word w ∈ I∗ and add a directed edge corresponding

to the input x ∈ I from the state given by Cone(w) to Cone(wx). We want to show this is

well-defined, that is if Cone(w) = Cone(ŵ) then Cone(wx) = Cone(ŵx) as

Cone(wx) = {w′ ∈ I∗|xw′ ∈ Cone(w)} = {w′ ∈ I∗|xw′ ∈ Cone(ŵ)} = Cone(ŵx).

We know that A has finitely many states since there are finitely many cone types and is

deterministic by construction since there is an output for any input from I at any given

state of the automata. Finally, we verify that L is the language accepted by the automata

A we constructed above. Observe that w ∈ L if and only if ε ∈ Cone(w) since an accepted

word w can be extended by ε an arbitrary number of times and still be accepted. Let w ∈ I∗

be an arbitrary word. The letters of w index a sequence of states in A which by construction

ends at Cone(w). But note that

w ∈ L ⇐⇒ Cone(w)is an accepting state ⇐⇒ ε ∈ Cone(w)

which is what we established above. Thus L is precisely the regular language of A.

Gabriel Ong; Automata and Automatic Groups 6

2 Automatic Groups

Let us slightly adapt our definition of a language.

Definition 2.1 (Padded Language). Let I be a set of symbols with $ /∈ I. L is a padded

language if and only if L ⊆ (I ∪ {$})∗ \ {$}.

In particular, padded languages give us the ability to read two words in I∗ of unequal length

at the same rate. Suppose u, v ∈ I∗ where u = u1u2 . . . u4 and v = v1v2 . . . v5. We can

rewrite these words in (I ∪ {$})∗ \ {$} such that they are the same length, in particular

by writing u as u1u2u3u4$ and writing v as above – these are now both words of length 5.

Padded languages in fact give rise to a rich theory of non-deterministic automata.

Recall that a deterministic finite automata has a well-defined next state function for every

state s ∈ S and every letter i ∈ I. This need not be the case in nondeterministic automata:

for a given state there can be any number of transitions corresponding to a particular input

i ∈ I. Consider the following state transition diagram:

s0start s1

1

with inputs I = {0, 1}. Let us first observe that this automata is nondeterministic, for giving

an input of 0 at s0 does not induce a transition of the automata. Moreover, we note that

the accepted language of this automata is the binary string “1” since to transition from the

initial state to the accepted state there can only be a 1. Though it may not be intuitively

obvious, it is a remarkable fact that we can actually construct a deterministic automata with

the same accepted language. Consider the following state transition diagram:

s0start s1 s2
1

0

0,1

0,1

this in fact gives us a deterministic automata that accepts the binary string “1”. It should

be noted, however, that the nondeterministic automata in this case was much less compli-

cated than its deterministic counterpart. Generally speaking nondeterministic autoamata are

Gabriel Ong; Automata and Automatic Groups 7

much more powerful than deterministic automata since it is an easy way to model processes

with multiple outcomes. But since computers are only capable of modeling deterministic

automata, that will be the focus of our further discussions.

We are now ready to define automatic groups.

Theorem 2.1 (Automatic Groups (Farb, 1992)). Let G = ⟨I|R⟩ where I = {i1, i2, . . . , ik}
generates G as a monoid, namely I = S∪S−1 for S a generating set of G. G is an automatic

group if and only if the following conditions hold.

• There is a regular language L ⊆ I∗ with automata A such that π : L → G is surjective.

• The following padded languages are regular:

L= = {(u, v)|u, v ∈ L, u = v}

Li1 = {(u, v)|u, v ∈ L, u = vi1}

Li2 = {(u, v)|u, v ∈ L, u = vi2}
...

Lik = {(u, v)|u, v ∈ L, u = vik}

Note that L= is the language of a finite state automata A= checking if two words in L

correspond to the same group element – this is in fact the equality problem. Whereas

Lil is the language of an automata Ail checking if two elements of a group differ by right

multiplication of the generator il for all 1 ≤ t ≤ k.

Definition 2.2 (Automatic Structure). The family of automata (A=, Ai1 , . . . , Aik) is the

automatic structure of G.

Let us consider some examples of automatic groups.

Example 1 (Finite Groups are Automatic). Let G = ({g1, g2, . . . , gn}, ∗). Set I = {g1, g2, . . . , gn}
and L(A) = I∗ the set of all words in the letters in I. Since G is a finite group any word in

I∗ corresponds to a letter of G under group multiplication, so we can construct our automata

by setting the elements of G as the accept states.

Example 2 (Z is Automatic). We show that Z = ⟨1⟩ is an automatic group. We do so

by constructing the word acceptor, equality checker, and comparator automata. Consider the

following set of finite state machines which correspond to the word acceptor, equality checker,

and comparators for the generators 1 and −1 respectively.

Gabriel Ong; Automata and Automatic Groups 8

s0starts1 s2

−1

−1

1 1

−1

1

s0starts1 s2

(−1,−1)

(−1,−1)

(1, 1) (1, 1)

(−1,−1)

(1, 1)

s0start

s1 s2

s3

(1, 1)(−1,−1)

(1, $)($,−1)

($,−1) (1, $)

(−1,−1) (1, 1)

s0start

s1 s2

s3

(1, 1)(−1,−1)

($, 1)(−1, $)

(−1, $) ($, 1)

(−1,−1) (1, 1)

We remark that an automatic group can have multiple automatic structures even for a fixed

generating set (Farb, 1992). We now want to discuss an alternative definition of automatic

groups. To do so, let us recall some notions from our second course in the theory of groups.

Let G = ⟨I|R⟩ be a finitely generated group with generating set I and relator set R. Let

Γ(G, I) be the Cayley Graph of the group G with respect to generating set I. A path

u ⊆ Γ(G, I) and define a function γu : N → Γ(G, I) such that for u = u1u2 . . . un with ui ∈ S

γu(t) =

u1u2 . . . ut t ≤ n

u1u2 . . . un t > n

where u ∈ G is the element represented by the word u in the free group represented by the

Gabriel Ong; Automata and Automatic Groups 9

word u in the generators. Moreover, recall that we have already shown that (Γ(G, I), dI) is

a metric space using the word metric.

Definition 2.3 (k-Fellow Traveller Property). Let u, v ⊆ Γ(G,S) be paths. u and v satisfy

the k-fellow traveller property if and only if there exists k ∈ R such that dS(γu(t), γv(t)) ≤ k

for all t ≥ 0.

Namely two paths in a metric space satisfy the k-fellow traveller property if and only if the

distance between points on two paths at any given time are bounded above by some constant

k ∈ R.

Let us now re-define automatic groups through the following proposition.

Proposition 2.2. Let G be a group generated as a monoid by I. G is automatic if and only

if the following hold:

• G has a word acceptor A with regular language L(A) ⊆ I∗.

• There exists k ∈ R such that if u, v ∈ L(A) represent elements of G such that dI(u, v) =

1 then the paths u and v satisfy the k-fellow traveller property.

Proof. (=⇒) Suppose G an automatic group generated by a monoid I = {i1, . . . , ik}. From
the definition of an automatic group, we know G has a word acceptor so it remains to show

the second property. Choose C ∈ N such that C > max{|S=|, |Si1|, . . . , |Sik |} where S= is

the set of states in the equality checker and Sil the set of states in the word comparator for

generator il. Suppose dI(u, v) = 1 so we know that u = vil for some il ∈ I. Let s(t) denote

the state the automata Ail is in after reading the prefixes γu(t) and γv(t) that may have been

padded. There must exist a path from s(t) to an accept state of length at most C since the

longest path in any one of the automata in the automatic structure is strictly less than C.

Note that this sequence of state transitions in Ail indexes a pair of paths γu(t) and γv(t) in

Γ(G, I) so that for some t fixed we have a path γu(t) through two vertices that differ by il

to γv(t).

Gabriel Ong; Automata and Automatic Groups 10

u v

• •

γu(t) γv(t)

ε

il

τ2
τ1

il

Note that paths τ1, τ2 are at most length C − 1 since the paths to the pair of elements that

differ by il is at most C. Thus we have dI(γu(t), γv(t)) ≤ 2(C − 1) + 1 = 2C − 1 giving us

our k-fellow traveller property by setting k = 2C − 1 for C chosen as above.

(⇐=) Suppose G satisfies the conditions above. We construct an automata Diff that tracks

the difference between two paths in Γ(G, I) and use Diff to construct the each automata of

the automatic structure of G in turn. We construct an the word comparator Ail generically,

which easily extends to constructing the automatic structure of G. Let Sil be the set of

states for the word comparator Ail and s0il ∈ Sil the start state of the word comparator

Ail . Let B(e, k) ⊆ Γ(G, I) be the k-ball around the identity with respect to I. We construct

the automata Diff by setting its states as Sil × Sil × B(e, k) with start state (s0il , s0il , e)

and accept states (s1il , s2il , il) for s1il , s2il ∈ Sil . We define state changes such that when the

automata in the state (s1il , s2il , g) reads the word (x, y) in the padded alphabet the automata

goes to the state (s′1il , s
′
2il
, x−1gy) where s′1il and s′2il are the states the automata in the word

acceptor A in states s1il and s2il are input with x and y respectively. Repeating this process

for every 1 ≤ l ≤ k as well as the identity so we have constructed the automatic structure

of G, implying it is automatic.

Gabriel Ong; Automata and Automatic Groups 11

3 Some Examples

Let us now consider some upshots of automatic groups. Automatic groups are actually quite

nice for the study of geometric group theory and possess several nice properties. For one,

we can observe that the existence of the equality checker automata allows us to solve the

equality problem – we can easily tell if words in I∗ correspond to the same group elements.

Recalling from class that the word problem is in fact equivalent to the equality problem

(Prop. 5.5 Meier, 2008). However, we can say something stronger: the word problem

solvable in O(n2) and construction of a Cayley graph in O(n log n) time (Farb, 1992). We

prove the former, leaving the reader to find the proof of the latter in (Epstein, 1992).

Let us first prove the following lemma (Epstein, 1992).

Lemma 3.1 (Bounded Length Differences). Let G be an automatic group as above. There

exists a constant C such that if w ∈ L(A) is an accepted word and for g ∈ G we have

dI(g, w) ≤ 1 then:

• g has a representative in I∗ of length at most |w|+ C in L(A)

• if some representative of g ∈ L(A) has length greater than |w| + C then there are

infinitely many representatives of g ∈ L.

We remark that the proof utilizes many ideas present in the proof of the pumping lemma.

Proof. Let C be greater than the number of states in any one of the automata in the auto-

matic structure, the word acceptor of G. Let dI(w, g) ≤ 1 and w′ ∈ L such that w′ = g. One

of (w,w′) or (w′, w) must be accepted either the equality checker or one of the comparator

automata. If |w′| > |w|+C then the automata undergoes more than C transitions and must

thus visit some state s more than once by Dirichlet’s Box Principle. Using the pumping

lemma we can write w′ = xyz where w indexes the inputs that induce the state transitions

between the first and last visit of the state s and easily shorten w = xz which ends in an

accepted state showing the first condition. Alternatively, one can lengthen w′ arbitrarily

since xynz is accepted for all n ∈ N.

We are now ready to prove our desired theorem (Epstein, 1992).

Theorem 3.2 (Quadratic Time Word Problem). Let G be an automatic group. For any

word w ∈ I∗ we can find a string in ℓ ∈ L such that ℓ = w = g for some g ∈ G in time

proportional to |w|2.

Gabriel Ong; Automata and Automatic Groups 12

Proof. Let u be an accepted string of Ait and it ∈ I a generator. We want to find an accepted

string v such that represents ux. Suppose our automata Ait accepts a string (u′, v′) where

u′ is a padded word representing u and v′ a padded word representing uik. We use the path

traced to an accepting state in the automata to construct v.

Let X0 be the set whose only element is s0it , the initial state of the automata Ait . For

i > 0 we inductively define Ti as the set of state transitions starting in Xi−1 with label

(xi, yi) where yi ∈ I ∪ {$} and

xi =

ui i ≤ |u|

$ i > |u|.

. Set Xi the set of states reached by Ti. Let n ∈ N be the smallest number such that Xn

contains an accepting state of the comparator automata Ait . We can thus trace a sequence

of state transitions in Ait from the start state to an accepting state. Taking the labels yi we

get a word v′ = y1 . . . yn representing ux. Discarding the padding symbols of v′ we yield v

our representative of ux.

Since there are finitely many states and state transitions, the time taken in each step is

bounded above by some constant. Therefore the overall time is proportional to n, the min-

imum number of steps needed above. By Lemma 3.1 n can only exceed |u| by a bounded

amount N as it would otherwise not be minimal. So for an accepted string u we can find a

representative for uit in time O(|u|) and that the representative’s length is at most |u|+N . A

change of coordinates show that the estimate holds for checking multiplication by i−1
t . Thus

we can find a representative of a word w of length at most N |w|+n0 where n0 is the length of

a representative of the identity. Thus the time taken is O(
∑|w|

j (jN + n0)) = O(|w|2) which
is what we wanted.

In particular, knowing a word e representing the identity, we can solve the word problem in

quadratic time by finding a representative in the accepted language L for the desired word

and feeding it into the equality checker automata.

Let us now turn towards the lamplighter groups.

Definition 3.1 (Lamplighter Group). The lamplighter groups Lm is defined as the semi-

direct product Zm ≀ Z with presentation

Lm = ⟨a, t|am = e, [tiat−i, tjat−j] = e⟩

for all i, j ∈ Z.

Gabriel Ong; Automata and Automatic Groups 13

Let us first look at an alternative way to view cone types. We start with a few definitions

(Neumann and Shapiro, 1996).

Definition 3.2 (Outbound Paths). Let (Γ(G, I), dI) be a metric space and p(t) a path in

Γ(G, I). If d(e, p(t)) is strictly increasing for all t then p(t) is an outbound path.

Definition 3.3 (Cone). Let g ∈ G. The cone of g denoted C ′(g) is the set of outbound

paths starting at g in the Cayley graph Γ(G, I).

Definition 3.4 (Cone Type). Let g ∈ G. The cone type of g denoted C(g) = g−1C ′(g) is

the set of outbound paths from g translated such that they start at the origin.

This notion of cone types is in fact equivalent to the one stated in Definition 1.7 since we

are looking at extensions to the word accepted by the acceptor automata. Let us state the

following definition from (Neumann and Shapiro, 1996) before proving a proposition.

Definition 3.5 (Falsification by k-Fellow Traveller). Let Γ(G, I) be the Cayley graph G =

⟨I|R⟩ where I generates G as a monoid. Γ(G, I) has the falsification by k-fellow traveller

property if there is a constant k such that if w ∈ I∗ is not geodesic then there is w′ ∈ I∗

such that w = w′, |w′| < |w|, and dI(γw(t), γw′(t)) ≤ k for all t.

So a Cayley graph has falsification for the k-fellow traveller property when for any represen-

tative of a group element w ∈ I∗ is not geodesic we can always find a shorter representative

w′ such that the two induced paths k-fellow travel in the Cayley graph. In other words if

two words end up on the same group element, their paths from the identity diverge by a

bounded amount. We can now show the following (Neumann and Shapiro, 1996).

Proposition 3.3. If Γ(G, I) has the falsification by k-fellow traveller property then Γ(G, I)

has finitely many cone types.

Proof. Let k be the appropriate constant for the falsification by k-fellow traveler property and

g ∈ G. We define a function fg on B(e, k) by fg(h) = dI(e, gh)−dI(e, g). Namely fg(h) gives

the relative distance of the vertex gh from e as compared to that of g. The falsification of

k-fellow traveller property implies that if w is an outbound path from g then there is no path

w′ from gh to gw with h ∈ B(e, k). In this case we will have |w′|+ dI(e, gh) < |w|+ dI(e, g)

since gh = gww′−1 must k-fellow travel. We can rewrite this inequality |w′| < |w| − fg(h).

Note that fg(h) is fixed so the length of w′ is bounded above. Thus the number of cone types

is also bounded above by number of possible words of length |w′| which is finite for a finite

generating set I.

Gabriel Ong; Automata and Automatic Groups 14

We can now leverage the Myhill-Nerode theorem to give us the following.

Corollary 3.3.1 (Regular Language of Geodesics). Suppose Γ(G, I) has the falsification by

k-fellow traveller property then the set of geodesics in I∗ is a regular language.

Proof. From above we know that if Γ(G, I) satisfies the falsification of k-fellow traveller

property then the geodesics of Γ(G, I) has finitely many cone types. But Theorem 1.3 tells

us that this means that the geodesics of Γ(G, I) are a regular language.

We will show a case of the following theorem (Cleary et al., 2006).

Theorem 3.4. The lamplighter group Lm with respect to the wreath product generating set

{a, t} have no regular language of geodesics.

This is to say that the set of geodesic paths for the lamplighter groups Lm do not form a

regular language and thus we cannot use an automata to check if elements of {a, t}∗ are

geodesic paths in Lm. To show this, we will require some previous results. In previous work,

Cleary and Taback proved a theorem about geodesic paths in L2 (Cleary and Taback, 2003).

Proof. Let g be the group element with [1]m at the −nth and nth position and [0]ms every-

where else with the lamplighter at the origin. We know that this element is represented by

two geodesic paths: tnat−2natn and t−nat2nat−n.

Suppose to the contrary that the geodesics of L2 form a regular language. Thus there is

a pumping length k for the corresponding automata. Choose n > k and suppose that the

first geodesic representative tnat−2natn is part of the language. Then since n > k we can

write g = xyz where |xy| < k. Namely we will have x = ti, y = tj, z = tn−i−jat−2natn

with 0 < j < k < n. By the pumping lemma xy2z must be automatic as well so

tit2jtn−i−jat−2natn = tn+jat−2natn is geodesic as well. Note that this is a word of 4n+ j + 2

and corresponds to [1]m at the (n+j)th and (j−n)th positions and [0]m everywhere else. But

this element can also be represented by the word t−n+jat2nat−n which is of length 4n− j+2

which is strictly shorter since j > 0. This is a contradiction.

We can thus show the following corollary (Cleary et al., 2006).

Corollary 3.4.1 (Cone Types of Lm). The lamplighter groups Lm have infinitely many cone

types with respect to the generating set {a, t}.

Gabriel Ong; Automata and Automatic Groups 15

Proof. Theorem 3.4 tells us that geodesics in Lm are not a regular language. The contra-

positive of Corollary 3.3.1 then implies that the geodesics in I∗ are not a regular language,

and thus have infinitely many cone types.

4 Conclusion

Our tour through automatic groups has drawn the connection between seemingly disparate

fields such as abstract algebra and the theory of computation. Moreover, we have seen that

automatic groups possess several nice properties such as a fast solution to the word problem

and constructible Cayley graph. We have also explored the link between geodesic paths

and regular languages, eventually showing that there are infinitely many cone types in the

lamplighter groups Lm. Though all this is all but a mere glimpse at the power of geometric

group theory and its widespread applications. Perhaps one ought go to Office Hours to learn

more.1

1Of course, a nod to Clay and Margalit, ed. Office Hours with a Geometric Group Theorist.

Gabriel Ong; Automata and Automatic Groups 16

References

Cleary S., Elder M., and Taback J. (2006). “Cone types and geodesic languages for lamp-

lighter groups and Thompson’s group F”. Journal of Algebra 303.2, pp. 476–500. doi:

10.1016/j.jalgebra.2005.11.016. url: https://doi.org/10.1016%2Fj.jalgebra.2005.11.016.

Cleary S. and Taback J. (2003). “Metric properties of the lamplighter group as an automata

group”. doi: 10 .48550/ARXIV.MATH/0312331. url: https ://arxiv .org/abs/math/

0312331.

Epstein D. B. A. (1992). Word Processing in Groups. CRC Press, Taylor & Francis Group.

Farb B. (1992). “Automatic Groups: A Guided Tour”. L’Enseignement Mathématique 38.6.

doi: 10.5169/seals-59493.

Meier J. (2008). Groups, Graphs and Trees: An Introduction to the Geometry of Infinite

Groups. London Mathematical Society Student Texts. Cambridge University Press. doi:

10.1017/CBO9781139167505.

Neumann W. D. and Shapiro M. (1996). “A Short Course in Geometric Group Theory”.

url: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.4879&rep=rep1&

type=pdf.

